Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer
نویسندگان
چکیده
Genetic alterations activating K-RAS and PI3K/AKT signaling are also known to induce the activity of mTOR kinase through TORC1 and TORC2 complexes in human pancreatic ductal adenocarcinoma (PDAC). Here, we determined the effects of the dual PI3K and mTOR inhibitor, NVP-BEZ235 (BEZ235), and the pan-histone deacetylase inhibitor panobinostat (PS) against human PDAC cells. Treatment with BEZ235 or PS inhibited cell cycle progression with induction of the cell cycle inhibitory proteins, p21waf1 and p27kip1. BEZ235 and PS also dose dependently induced loss of cell viability of the cultured PDAC cells, associated with depletion of phosphorylated (p) AKT, as well as of the TORC1 substrates 4EBP1 and p70S6 kinase. While inhibiting p-AKT, treatment with PS induced the levels of the pro-apoptotic proteins BIM and BAK. Co-treatment with BEZ235 and PS synergistically induced apoptosis of the cultured PDAC cells. This was accompanied by marked attenuation of the levels of p-AKT and Bcl-xL but induction of BIM. Although in vivo treatment with BEZ235 or PS reduced tumor growth, co-treatment with BEZ235 and PS was significantly more effective in controlling the xenograft growth of Panc1 PDAC cells in the nude mice. Furthermore, co-treatment with BEZ235 and PS more effectively blocked tumor growth of primary PDAC heterotransplants (possessing K-RAS mutation and AKT2 amplification) subcutaneously implanted in the nude mice than each agent alone. These findings demonstrate superior activity and support further in vivo evaluation of combined treatment with BEZ235 and PS against PDAC that possess heightened activity of RAS-RAF-ERK1/2 and PI3K-AKT-mTOR pathways.
منابع مشابه
PI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملTargeting PI3K/mTOR Signaling Displays Potent Antitumor Efficacy against Nonfunctioning Pituitary Adenomas.
PURPOSE Novel therapeutic approaches are needed to improve the postoperative management of residual nonfunctioning pituitary adenomas (NFPA), given their high relapse rate. Here, we evaluated the antitumor efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in the only available model of spontaneous NFPAs (MENX rats). EXPERIMENTAL DESIGN Organotypic cultures of rat primary NFPAs were incubate...
متن کاملSuperior efficacy of co-treatment with the dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A against NSCLC
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. NSCLC development and progression have recently been correlated with the heightened activation of histone deacetylases (HDACs) and PI3K/Akt signaling pathways. Targeted inhibition of these proteins is promising approach for the development of novel therapeutic strategies to treat patients with advanced NS...
متن کاملAutophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235
Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CR...
متن کاملDual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma
Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012